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Abstract: Magnetic orderings, i.e., the spontaneous alignment of electron spins below a critical temperature, have been playing
key roles in modern science and technologies for both the wide applications of magnetic recording for information storage and
the vibrant potential of solid state electronic spin devices (also known as spintronics) for logic operations. In the past decades,
thanks to the development of thin film technologies, magnetic thin films via sputtering or epitaxial growth have made the spin-
tronic devices possible at the industrial scale. Yet thinner materials at lower costs with more versatile functionalities are highly
desirable for advancing future spintronics. Recently, van der Waals magnetic materials, a family of magnets that can in principle
be exfoliated down to the monolayer limit, seem to have brought tremendous opportunities: new generation van der Waals spin-
tronic devices can be seamlessly assembled with possible applications such as optoelectronics, flexible electronics, and etc.
Moreover, those exfoliated spintronic devices can potentially be compatible with the famed metal-oxide field effect transistor ar-

chitectures, allowing the harness of spin performances through the knob of an electrostatic field.
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1. Introduction

In general, spintronics such as spin valves must involve in
their structures multiple layers of magnetic thin films{'-8l, For
example, spin-polarized states of magnets can be interfaced in-
to parallel or anti-parallel configurations, giving rise to logic
devices thanks to the charge-spin coupling. In the past dec-
ades, thin film grown in a vacuum is the main route to fabricat-
ing spintronic devices ever since the pioneering discoveries of
spin injection and charge-spin interactions!’-9, However, vacu-
um-grown thin films require complex facilities, and some-
times stringent lattice match between the target films and the
substrates.

Liberating the degrees of freedom of lattice-matching as
well as the demanding growth conditions had never been so fa-
cile until the day when graphene was exfoliated by simply us-
ing a scotch tapel'%l, Researchers all over the world rapidly initi-
ated the historical gold mining in the so-called ‘wonderland of
flatland’, i.e, a new yet rational library of more than 5,000
layered compounds on earth['ll. Because of the relatively
weak inter-layer van der Waals (vdW) bonding in those materi-
als, they are often referred to as vdW materials. More precisely,
most of them are studied at the atomically thin (or the two-di-
mensional (2D)) limit, in order to reduce the Coulomb screen-
ing and to achieve the unprecedented properties that are not
possible in their three-dimensional (3D) bulk forms(10. 12-15],
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Magnetic vdW materials, by definition, are consisted of 2D
layers with spontaneous spin polarization below their magnet-
ic critical temperatures. Along-range spin ordering was long be-
lieved not to be available in 2D as predicted by the early theor-
ies based on the isotropic Heisenberg models['®l, Neverthe-
less, experimentalists, after having exhausted the low-hand
fruits in graphene, recently moved their focus to the exfoli-
ation of magnetic vdW compounds, and have claimed unam-
biguously the observation of magnetism down to the monolay-
er-limit in several vdW magnets!'3-15.17. 18] Since the research
work on 2D magnetic monolayer reported by two groups al-
most in the same time in 201713 '8], tremendous efforts have
been put into discovering new 2D magnetic materials and ex-
ploring the spin interactions in them> 17321 making the 2D
magnetism one of the most popular issues in both condensed
matter physics and material sciences.

Compared to their 3D counterparts, the advantages of
magnetic 2D materials can be twofold. Firstly, 2D magnets can
be seamlessly assembled with different rotational angles
between the layers of different kinds, thus allowing band engin-
eering through tunable moiré super lattices. Secondly, many
of the 2D magnets can be implemented into in-plane field ef-
fect transistors, as they are semiconducting with Fermi levels
gate tunable. It thus largely increases the opportunities for fu-
ture spintronic applications, in terms of not only the variety of
materials but also the emergent physical phenomena that
arise from the novel 2D nanostructures. In this review, we will
briefly describe the state-of-the-art spintronics based on 2D
vdW materials and offer a new perspective by drawing a poten-
tial roadmap of vdW spintronics for the next decade.
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Fig. 1. (Color online) (a, b) Typical spin valve devices made of graphenel33. 34, (c) The performance of non-local magneto-resistance for CVD

graphene spin valve with different channel lengths34.,

2. The ‘pre-history’ of vdW magnets spintronics

Many of the vdW materials are non-magnetic. However,
even in the early days of the 2D materials research, spin-re-
lated phenomena have already attracted vast attentions. In-
deed, spininjectionfrom magnetic electrodesinto non-magnet-
ic substrates can work as an in-plane configuration of spin
valvesl'-8 33, 341 Because of the weak spin-orbit coupling and
the resulting long spin diffusion length of up to tens of mi-
cron-meters34 351, graphene was demonstrated to be an ideal
platform for such applications (Figs. 1(a)-1(c)). Transition met-
al disulfide (TMD) such as MoS, is also reported to show simil-
ar effect but with a much shorter spin diffusion length[36,

Except for direct spin injections, MoS, was also found to
be a candidate for spin manipulations in an optical manner
due to the spin-valley locking in this specific type of 2D materi-
all37. 381, Recent experimental evidence showed that a band fer-
romagnetic state can be achieved with the assistance of a Zee-
man gapB3949], Although this ferromagnetism-like behavior can-
not occur without a perpendicular magnetic field, it does shed
light on the possibility of obtaining the novel type of ordered
spins in such 2D systems. When exposed to high magnetic
fields, spin-related physics can also be realized in graphene,
such asthe observation of tunable quantum spin Hall effect(41.42,
Itis noteworthy that, as a semimetal, graphene itself can be im-
plemented for molecular spintronics*3], which in principle is
feasible with other 2D materials.

As stated above, before the isolation of 2D intrinsic vdW
magnetic materials, spin-related phenomena have been
widely studied in a broad range of vdW materials, which can
be categorized in the volume of the ‘pre-history’ of intrinsic
vdW magnets.

3. Exfoliated intrinsic vdW magnets spintronics

2D vdW magnets are not at all new materials, while they
were just for unknown reasons not quite exfoliated before
2017. Actually, the bulk forms of layered magnetic com-
pounds have been well characterized in terms of crystallograph-
ic and spin structures4-621, Early few-layered devices were
also fabricated and tested, but without systematic examina-

tions as a function of the number of layers down to the mono-
layer limit. Since 2017 when magnetism in the 2D limit was re-
ported experimentallyl'3.18], 2D exfoliated vdW magnetic materi-
als have received renewed research interest from worldwide,
opening a new era of long-range spin orderings at 2D.

To date, experimental examinations together with the-
oretical predictions show that most spin exchange interac-
tions in the 3D scenario (including direct Ising and XY interac-
tions, and other indirect interactions) can prevail down to the
2D limitl'3, 15, 17-19, 49, 73-93] According to the existing literat-
ures, we here list the most studied families of 2D magnetic ma-
terials, with their fingerprints (such as bandgap, magnetic or-
der, synthesis method, type of spin exchange interactions, critic-
al magnetic temperature, etc.) labeled in Table 1.

The successful exfoliation of vdW magnets is just the begin-
ning of the game, like every new topic in condensed matter
physics — people have to find new physics, as well as new ap-
plications out of them. In the coming sections, we will discuss
a couple of examples of such efforts.

4. Spin valves based on exfoliated vdW magnets

Spin valves have planar configurations as indicated in Sec-
tion 1 and in Fig. 2(a), as well as vertical configurations that
sometimes take the advantage of electron tunneling by sand-
wiching a tunneling insulator between two ferromagnetic
(FM) layers, as shown in Fig. 2(b). This FM-insulator (I)-FM struc-
ture is well known as tunneling magnetoresistance (TMR)Z,
with maximum magnetoresistance defined as 2P;P,/(1-P;P,)
in the Julliere model, while P, and P, are spin polarization ra-
tios of each layer, respectively.

The first attempt of the vertical spin valve using vdW mag-
netic materials was realized in 2015, with two pieces of few-
layered Fe-doped TaS, as the FM layers, while the tunnel layer
was oxides formed naturally between their interface (Figs. 2(d)
and 2(e)®¥), TMR was reported to be about 7% in this struc-
ture, shown in Fig. 2(f). Intrinsic vdW ferromagnet Fe;GeTe,
was recently used to serve as FM layers in this very configura-
tion, but with a better-controlled tunnel layer by intercalating
an ultrathin hexagonal boron nitride (h-BN) between two
Fe;GeTe, flakes. Indeed, TMR can reach as high as 160% at 4.2
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Fig. 2. (Color online) (a, b) Schematics of configurations for 2D spin valve devices, and (c) 2D spin filter tunnel junction (sf-TJ). (d-f) The first spin

valve demonstrated using 2D vdW magnetic (Fe-doped TaS,) materials®4,

K31,

Magnetic vdW materials can be easily exfoliated on a
desktop and assembled into spintronic devices, which are free
of epitaxial technology and in principle can be mass-pro-
duced by means of chemical vapor deposition (CVD) etc. It
thus opens up a totally new page and shall give a profound im-
pact on the future of the spin-valve industries. Nevertheless,
the experimentally-demonstrated spin valves are, so far, work-
ing far below room temperature. The transfer/stacking meth-
od is yet to be optimized for batch production, which will also
be discussed from a broad perspective in the last section of
this review.

5. vdW magnetic tunnel junctions

Besides the FM-I-FM configuration, metal-FM-metal con-
figuration, which has the insulating FM sandwiched between
two metals, has also been used as spintronic device, often
referred to as spin filter tunnel junction (sf-TJ), as shown in
Fig. 2(c). As given in Table 1, many of the vdW magnetic materi-
als (including Crls, CrBr; and etc.) have semiconducting gaps,
and usually are quite insulating at low temperature, thus provid-
ing a unique chance for the study of 2D vdW sf-TJs and re-
lated tunneling physics.

Indeed, several experiments have confirmed that mul-
tilayered-CrX; (X = |, Br, Cl) sf-TJs have extremely large mag-
netoresistance up to ~ 106%[2"- 23 24, 96-100], Magnon-assisted
tunnel spectroscopy was also studied in CrBr; sf-TJ devices2'l,
Compared with non-magnetic tunnel barriers within the same
structure, a spin-polarized tunnel layer can provide new mech-
anism for electron tunneling via magnon-emissions instead of
phonons or localized state in the former casel101-105],

In addition to the applications stated above, sf-TJs made
of vdW magnetic tunnel layers can serve in a new kind of vertic-
al spin-related field effect transistor. In this scenario, transpar-
ent few-layered graphene gate electrodes are often equipped
within the structure illustrated in Fig. 3(a), in the sense that op-
tical probe can penetrate the graphene gate without catching

any parasitic magnetic signals but the ones from the vdW mag-
netic tunneling layer itself. During measurements, gate
voltages can be seamlessly applied, pumping electron in and
outof the band structure of the target vdW magnet and sequen-
tially affecting the magnetic parameters including coercivity,
Curie temperature, and etc.['5 1071,

Itis noteworthy that, so far, investigations on sf-TJs that util-
ize antiferromagnetic vdW layers as tunnel barrier remain
scarce. To some extent, both sf-TJs (Fig. 2(c)) and TMRs (Fig. 2(b))
can be used as logic unit and magnetic sensors!'07-1091, Again,
magnetic critical temperatures up to room temperature of
those 2D vdW magnets are deadly desired at the current
stage.

6. Planar vdW magnetic field effect transistors

Not quite similar to the sf-TJ with insulating vdW magnet-
ic tunnel layer mentioned above, a real planar structure that
mimics the famed metal-oxide field effect transistor (FET) can
also be achieved in vdW magnets. This will require naturally a
semiconducting channel, or at least a conducting channel
whose electron density of states can be gate tuned, via electro-
static or liquid gate techniques.

A series of vdW materials Cr,M,Teg (M = Si, Ge) com-
pounds were reported to be intrinsic magnetic semiconduct-
ors, with reported band gaps varying in the range of 0.4-1.2
eV115,19,62,66-69] |t thus makes them ideal platforms to investig-
ate FETs based on their exfoliated thin flakes. Several itera-
tions of vdW spin-FET devices are illustrated in Figs. 4(a)-4(c),
while the earliest experimental attempt can be traced back to
2016, as shown in Fig. 4(a)%2, However, due to the air-instabil-
ity, those devices made in air showed relatively poor perform-
ancel®2 119, while h-BN protection in the inert gas atmosphere
significantly improved the gate tunability of electron charge
and spin, as shown in Figs. 4(e)-4(g)"5.

It was known that even conventional metallic thin Fe, Co
films can manifest tunable magnetic parameters via ionic gat-
ing""1-113], by two orders of magnitude stronger gate effi-

X X Li et al.: Perspectives on exfoliated two-dimensional spintronics
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Fig. 3. (Color online) (a) Schematics of Crl; sf-TJ%, (b-d) Optical images of several iterations of vdW 2D sf-TJ devices since 2017999, 1061 Notice
that all of them have very small junction area possibly to reduce the number of magnetic domains. (e, f) The magneto-tunneling current and

spin-filtered magnetoresistance for a four-layered Crl; sf-TJ devicel®l,

ciency compared to the Si gatel’sl. Similar effect was observed
in a metallic phase few-layered Fe;GeTe, down to the monolay-
er limitl'7). Strikingly, Curie temperature of a four-layered
Fe;GeTe, can be enhanced to over 300 K using the ionic liquid
gating techniquel'7l, Great promises are therefore held that
room-temperature vdW magnetic transistor may be a key to re-
volutionize spintronics in the future. To note that recent re-
ports have shown geometry effect (nano-patterning) can also
enhance the magnetic ordering temperature up to room tem-
perature in thin flakes of Fe;GeTe,['4,

Up to now, studies on vdW magnetic semiconducting
FETs are still on the go. There is plenty of room to improve the
performances, including the working temperature, and the in-
terface between FM and AFM vdW semiconductors, and etc..
While vdW FM semiconductors are of great interest for planar
FETs, it is noteworthy that there is the family of vdW AFM semi-
conductors, which are also promising for planar FETs, as well
as opto-electronic applications.

7. Current-driven switching of vdW magnets

About three decades after the theoretical predic-
tions!115. 1161 it was experimentally confirmed that due to the
spin-orbit coupling (SOQ), a transverse spin current can be gen-
erated in a non-magnetic system via an unpolarized electrical
current, which is referred to as the famed spin Hall effect (SH
E)[117.118], Spin Hall and inverse spin Hall effects are known to
have fueled many important manifestations on spintronic
devices probed by both electrical and by optical detection tech-
niques!119. 120,

When interfaced with a magnetic layer, the SHE in the
non-magnetic layer with large SOC can exert an orbit torque
(SOT) on the magnetic layer that can switch the direction of
magnetization, thus giving rise to a current-driven spin flip. Dur-

ing the switching process, a small external magnetic field colin-
ear with the current is required('22], unless the lateral structur-
al symmetry is broken!'21l, The SOT devices show much-im-
proved energy efficiency as compared to spin transfer torque
(STT) technique, and thus are of great importance for magnet-
icmemory applications. As discussed at the beginning of this re-
view, owing to the advantages of 2D materials, it is believed
that the vdW magnets can serve as a new material-base for
the SOT multi-layer heterostructures'23],

Indeed, thereportsin 2019 indicate thatitis absolutely feas-
ible to replace the conventional magnetic film with vdW ferro-
magnets in the SOT structures!'24 1251, As shown in Figs. 5(a),
5(b), and 5(e), few-layered Fe;GeTe, (FGT) was chosen to be in-
terfacially coupled to a metallic Pt thin film, thus giving rise to
a non-magnetic/vdW-magnetic interface. With the help of a
small in-plane magnetic field, the out-of-plane magnetization
of FGT can be switched at a critical current, indicated in Figs. 5(c),
5(d), 5(f), and 5(g)["24 1251,

At the current stage, SOT devices using vdW magnets as a
platform are still far from mature to meet the applicational
standard, such as free of an external magnetic field, low critic-
al switching current density, and etc. Apparently, room temper-
ature operation is needed, and the SOC layers are so far still con-
ventional metallic thin films. There is thus a long way to go to
address the above points to push the vdW SOT devices to-
wards real applications.

It is worth noting that spin Hall effects can be also ob-
served via magneto-optical Kerr measurements as experiment-
ally evidenced in semiconducting TMDs!'26]. Therefore, from
both fundamental and application points of view, it is be-
lieved that almost all-vdW materials-based SOT devices are pos-
sible. And thanks to the electronic band gaps often existing in
either TMDs or vdW magnets, gate-tunable multi-functional

X X Li et al.: Perspectives on exfoliated two-dimensional spintronics
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Fig. 4. (Color online) Optical image of several versions of spin-FETs based on magnetic vdW materials (a) semiconducting CrSiTe;[%2, (b) semicon-
ducting Cr,Ge,Tegl'19, (c) h-BN encapsulated Cr,Ge,Teg (red and black dashed lines label the edge of Cr,Ge,Teg and graphene electrodes, re-
spectively)'3], and (d) Al,Os-assisted exfoliated 4-layered metallic Fe;GeTe,['7, respectively. Scale bars in (c) and (d) are 10 and 100 um, respect-
ively. (€) Schematic of the tunable Fermi level and simplified spin-polarized band structure of the vdW intrinsic magnetic semiconductor!'sl. (f, g)
Gate tuned magnetic hysteresis loops and gate-tuned /-V curves of the few-layered Cr,Ge,Teg planar FET devicel'5. (h, i) Longitudinal conductiv-
ity and Curie temperature of the Fe;GeTe, planar FET as a function of ion liquid gatel'”). (j) The anomalous Hall curves of the ionic-gated

Fe;GeTe, planar FET at different temperatures!'7l,

magneto-optotronics and/or memories will have profound im-
pacts in the next generation spintronics.

8. Other possibilities and an outlook of vdW
spintronics

In the previous sections a couple of typical vdW spintron-
ic devices such as spin valves, spin filter tunnel junctions, and
planar spin FET have been introduced, and we now come to a
brief discussion on several other configurations of spintronic
devices using vdW magnets as a platform. In Fig. 6, a variety of
nanostructures for vdW spintronics are illustrated. It can be
seen that spin-related electronic devices can in principle be
built via a mechanical stacking method, giving rise to possible
applications such as 2D heterostructure of multi-ferroics, vdW
magnetic recording, and topological magnetic states, etc.. Up
to now, the emerging phenomena in 2D vertical multi-ferroics
as well as topological magnetic states in the vdW systems are
attracting great interests. We now propose a roadmap for exfoli-
ated spintronics, as indicated in Fig. 7. In short, depending on
the development of vdW materials, the future trend of the

vdW spintronics can be classified into fundamental- and app-
lication-oriented directions.

For fundamental research, the future tasks will be looking
for new emerging phenomena including topological magnet-
ic states (Skyrmion!'27] as an example), magnetic semiconduct-
ors and the associated devices such as magnetic p-n junc-
tions, 2D multi-ferroic devices via the stacking of vdW layered
materials, the novel devices for superconducting spintronics
(such as Pijunctionl'28], etc.) based on vdW magnets, novel inter-
facial coupling using layered FM/AFM compounds, as well as
NMR/ESR and Rashba effects in 2D vdW systems.

For application research, the top priority will be to find
room temperature vdW magnets. And the mission for future ap-
plication shall include spin torque transfer (or spin Hall re-
lated) devices, spin diodes, spin valves, vdW magnetic semicon-
ductors (as compared to the bulk diluted magnetic semicon-
ductors(129-133l)  magnetic electronic sensors, data storage
devices (such as optical/electrical writing of domains, ex-
change bias effects that may be gate tunable, magnetic vdW
electronics for biological utilities, etc.).

X X Li et al.: Perspectives on exfoliated two-dimensional spintronics
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Fig. 5. (Color online) (a, b) Schematic and optical image of a typical Pt/FGT devicel'?4l. (c) Hall resistivity recorded as a function of current flowing
in the 2D vdW heterostructure device. A hysteresis loop can be seen, demonstrating the current-driven magnetic switch of the magnetizations in
the FGT layer(124], (d) Switching current as a function of externally applied in-plane magnetic fields at different temperaturest'24., (e) Schematic

structure of Pt/FGT devicel'25l, (f) Anomalous Hall effect curve of the Pt/FGT devicel'25. (g) Current-induced magnetic switch at different external
magnetic fields!25],
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Fig. 7. (Color online) A roadmap for the exfoliated spintronics.

Finally, we would like to recall the fact that, in principle,
vdW magnetic materials are compatible with mass produc-
tion processes such as CVD methods!'34. For example, CVD
grown non-vdW magnetic thin films have been demonstrated
recently®. 321 |t is reasonable to believe that flexible spintron-
ics can berealized in the very near future. Layered magnetic ma-
terials thus hold great promises for spintronics made in a
totally new manner, i.e., atomic layer by atomic layer, with an in-
finite combination of the rotation angle, and unlimited possibil-
ity of assembling sequence, that will truly revolutionize our
daily life.
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