铁磁半导体 花落两维里*

韩 拯[†] 杨 腾^{††} (中国科学院金属研究所 沈阳 110016) 2018-09-20收到

† email:zhenghan1985@gmail.com

†† email: yanghaiteng@msn.com DOI: 10.7693/wl20181010

三十余载觅磁稀 今看低维若鹜依 极限少层铬锗碲 双重调控又双极 载流双子两极缘 电荷惺惺共自旋 量子以为多靓颖 其实几负丽人娟 ——带隙铁磁¹⁾

1 引子

自古人类视觉追求立体、丰 满、洞透,当下物理追求平面、细 微、对称破缺。后者为之欲生欲死 的对象之一就是"二维"这个字 眼。她真是让人又爱又恨。爱者赞 其丰富物理,可上天入地无所不 能而酣畅淋漓。恨者斥其不可捉 摸而迁怒于"炒作概念",就如朗 道不喜、墨敏(Mermin)证毕一般, 仅此而已。窃以为,二维材料的 "发现"与研究,对人们思维模式 的启发意义要远大于材料本身的 意义,这种状况对物理研究有利 有弊。有利是说能够拓展创新知 识,有弊是说这种状况不会持久, 纳税人和投资者不会光付钱不吃饭。

不过,这些曾经璀璨在无涯 SCI里的二维花火,借用北京大学 韩伟老师在"亦是亦彼、更唱迭和" ("量子材料 Quantum Materials"微 信公众号文章)一文中所述:最保守 的后果,也让我们为此兴奋过、快 乐过、彻夜难眠过。

2 貌似一统江湖

早在20世纪30年代,教主朗道 (L. D. Landau, 1937)和派尔斯(R. E. Peierls, 1934)曾指出:严格的二维 材料在非零温下存在热力学极限下 的失稳,其晶格将由于热涨落引起 的面外振动振幅之发散而崩塌。他 们还指出:二维体系热涨落关联函 数具有各向异性的特点(参见:朗 道、栗弗席兹著《统计物理学》第 一部分,第三版,章节137和 138)。本世纪初,诺奖得主Geim和 Novoselov却硬生生用胶带扯出了石 墨烯这一理想二维原子晶体,并引 发了十余年来二维新材料设计制备 的淘金热。

现在看来, 朗道等人的理论看 似关上了二维材料研究的大门, 其 实也打开了一扇窗, 印证了科学家 不知道是哪里来的豪言壮语: making impossible possible。一方面, 绝对 的热力学极限(如无限大尺寸)难以 获取, 因此零波矢下振幅发散是不 是真的会发生也没有人知道。另一 方面,悬浮的二维材料可以通过面 内外的振动耦合和弯曲,来维持结 构的长程有序,这一定程度上也许 可以抑制振幅发散问题。同时,二 维材料和衬底之间的弱作用(如范 德瓦尔斯力)也可以帮助稳定二维 材料。

当理想的二维晶体证明了其存 在的合理性,那其中的二维世界就 有晶格、电荷、轨道、自旋、界 面、相互作用等各种要素可以作为 颜料,来学习毕加索寥寥几笔画印 象派名画了,说不定百年后可以留 名青史。其中一个问题是:二维长 程磁有序能否稳定存在呢? 这个问 题很早就有人提出了,后来同样也 遇到一些名家用清规戒律堆起来的堡 垒: 著名的 Mermin-Wagner theorem 给出了严格的数学推导(M-W理 论),看似为不少怀疑论者提供了强 大的理论支持。这个定理是这样说 的: The Mermin-Wagner theorem states that continuous symmetries cannot be spontaneously broken at finite temperature in systems with suffi-

1) 题头小诗前半部分为中国科学院金属研究所韩拯研究员所写,后半部分由南京大学刘俊明教授所写。

^{*} 本文原载于"量子材料Quantum Materials"微信公众号,刊发前作者有些许修订。

ciently short-range interactions in dimensions $d \le 2_{\circ}$

从另外一个角度看,M-W理论 大概是营销学中洗脑最成功的范例 之一。其秘籍一经问世,所有沉迷 其中之人皆深信不疑,一度或多或 少放弃了对二维自旋有序的追求。 比如,在磁学圈里,哪怕是刚入门 的新手,也能信心满满地吆喝一 句:二维非零温下各向同性海森伯 自旋的长程磁有序不存在!不过, 细心的读者会发现,这"不存在" 三字结论,前面竟加了二十多个字 的修饰语,如上所示。

那么问题来了,M-W理论究竟 是如何物理的?David Mermin和 Herbert Wagner两位大牛最早的时候,采用Bogoliubov不等式对各向 同性海森伯模型的哈密顿量H进行 推算后,得到z方向上的磁矩为s₂, 其中H和s₂的表达式如图1所示, 即有限温度T下,没有外场B,系 统不可能发生自发磁化。

M-W理论不仅仅在统计力学中 成立,还被Sidney Richard Coleman 用量子场论严格证明,并随后被 骨灰级粉丝们如Jürg Fröhlich和 Charles Pfister 推广到包罗了晶格、 磁性等一切二维序中。然而,M-W 理论框架成立的"二维各向同性" 条件十分容易被打破,成就了后来 现实中的"各向异性"二 维海森伯磁性,这是后话。

这厢目前态势萎靡, 且按下不表。我们来说一 点励志的。

3 想说爱你不容易

Science杂志在庆祝创 刊125周年之际,公布了 125个最具挑战性的科学 问题¹¹。其中"是否可能 制造出室温下的铁磁半导 体?"赫然在列。虽然科 学问题向来是见仁见智, 未必需要过于仰视大牛权 威,但还是值得一问:这 看似不起眼的话题,何故 能够成为125个最待解决 的科学问题之一? 细细品

味,还是能够体会到有些学者们对 M-W理论不服气的那股劲头。

众所周知,传统的电荷晶体管 MOS,通过外加门电压产生电场效 应来改变半导体有效载流子浓度, 从而实现晶体管沟道的导电开闭状 态(逻辑运算能力)。不过,已经有 长篇累牍的很多文章都反复说了: 电子除了携带电荷外,也携带自旋 这个内禀属性。交换作用下自旋变 得长程有序,便形成磁性。铁磁材

> 料磁化方向的变 化则可以用来做 磁存储(譬如硬 盘)或者自旋阀 (例如读写磁头)。

很显然,科 学人说:在可预 见的未来,仅仅 对磁性材料中的 自旋或半导体材 料中的电荷进行

单独调控将无法满足信息技术发展 的要求。似乎唯有如此,科学家才 可以给自己的研究事业找到生存之 道。数据存储和逻辑运算的架构分 离,导致数据读写速度跟不上CPU 运算速度,从而造成所谓的"冯·诺 依曼瓶颈",这也是不争的事实。科 学人很快注意到,想要真正利用电 场同时操控载流子电荷和自旋,必 须从半导体下手。由此,我们需要 一种具有本征磁性的半导体:外电 场改变费米面的同时,也能显著影 响净磁矩的排布,从而改变宏观磁性。

1986年, T. Story等人在半导体 PbSnTe体系中进行Mn掺杂,得到 受载流子影响而变化的非零铁磁居 里温度^[2],这是首个磁性掺杂半导 体的实验原型。2000年,Ohno和 Chiba在InAs中掺杂Mn元素,发现 反常霍尔效应在电场作用下的可调 控性,惊动学术界^[3]。这类体系通常 被称为稀磁半导体(diluted magnetic

ABSENCE OF FERROMAGNETISM OR ANTIFERROMAGNETISM IN ONE- OR TWO-DIMENSIONAL ISOTROPIC HEISENBERG MODELS* N. D. Mermin[†] and H. Wagner[‡]

 $H = -J \sum_{i,j} \mathbf{s}_i \cdot \mathbf{s}_j$, $|s_z| < \frac{\text{Const.}}{T^{1/2}} \frac{1}{|\ln|B||^{1/2}}$,

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York (Received 17 October 1966)

It is rigorously proved that at any nonzero temperature, a one- or two-dimensional isotropic spin-S Heisenberg model with finite-range exchange interaction can be neither ferromagnetic nor antiferromagnetic. The method of proof is capable of excluding a variety of types of ordering in one and two dimensions.

图1 Mermin和Wagner于1966年发表在Phys. Rev. Lett.的文章 截图及其导出的哈密顿量和磁矩的不等式

semiconductor, DMS)。随后, Tomasz Dietl教授说, (Ga, Mn)As稀磁半导 体的铁磁序是弥散孤立的Mn原子 磁矩之间长程有序所致, 而这些磁 矩相互作用靠Zener模型描述的空 穴来传递^[4]。

人们发现, DMS 看起来很像断 臂维纳斯,美貌却有缺陷。其中一 大憾事是难以找到室温下具有半导 体可调控特性的铁磁材料。Nature Materials杂志2010年推出了一期专 Fil (Nature Materials, Focus Issue: December 2010, Volume 9, No 12), 在该专刊中, Dietl 描述了 DMS 下 一个十年发展前景,指出:在空穴 类型的氮化物或氧化物半导体中, 通过磁性掺杂居里温度或许能达到 室温以上。而同期另一篇以"Is it really intrinsic ferromagnetism?" 为 标题的访谈中,被采访者 Scott Chambers 教授则坦言,在氧化物中 寻找高温载流子辅助的铁磁半导体 并"不那么乐观"。这是很棒的百花 齐放百家争鸣,但也给下一步该怎 么办造成困扰。一时间,稀磁半导体的研究,可谓陷入了"不那么高潮"的低谷。除此之外,对于 那些严苛的物理人而言,DMS其 实是一类可控性比较弱的体系, 注定其发展之路将一波三折、坎坷 不断。

4 柳暗花明又一村

自关于DMS的第一篇工作发表 后,DMS已经奋斗了十好几年了。 到2017年,凝聚态物理界发生了一 件趣事:范德瓦尔斯二维材料就像 彗星,撞击了磁学圈。不是说彗星 撞击有多大能耐,而是彗星尾巴那 亮眼的美丽吸引了人。加州大学伯 克利分校张翔研究组、华盛顿大学 的Xiaodong Xu研究组各自独立地 在Cr₂Ge₂Te₆和CrI₃中发现了二维单 层极限下的铁磁性和反铁磁性^[5, 6]。 不过,Cr₂Ge₂Te₆和CrI₃都极易退 化,所以想在空气中做点实验可能 有点差强人意。不过,我们大可以 竞相发布了10余篇

和二维铁磁材料有关

由此去理解物理,

为寻找新的材料而

报道说反铁磁 CrI₃、

铁磁Fe₃GeTe₂、铁电

CuInPS 和 In2Se3 等材

料[7-14]均可呈现类似

二维极限下的铁性有

序行为。这一波发现

为铁性二维原子晶体

的研究掀起了一股风

潮,前所未有。仅在

2018年初的几个月

里,世界上多个科研

团队就已经在arXiv

事实上,不断有

努力。

的新进展工作(图2)。

二维范德瓦尔斯材料主要优势 之一是:由于z轴维度消失,原有 三维块体中的静电屏蔽减弱,有可 能在本征二维半金属或半导体上构 建场效应器件,以用来做传感器或 逻辑运算器件。近年来,随着二维 范德瓦尔斯材料家族的扩展,少层 磁性二维半导体材料已在各领域得 到广泛研究,产生了诸多有趣的物 理现象。然而,基于二维本征铁磁 半导体材料的场效应器件及其相关 物理至今研究甚少,静电场调制 其磁性的研究更是缺乏。接下来我 们以CrI₃和Cr₂Ge₂Te₆为例讨论其中 内涵。

5 翻手 AFM 覆手 FM, 磁性风 流且看碘化铬

CrI₃优势在于:与大部分人工 薄膜反铁磁体系相比,该材料原子 层之间逐层面外反铁磁排列,无需 外延生长,浑然天成,且极大优化 了界面自旋极化。由此,很自然想 到该材料的隧穿磁电阻(TMR)一定 有趣。的确,*Science*杂志2018年6 月15日(第360期)背靠背发表了两篇 论文^[7,8](第三篇同期挂在 arXiv上 的类似结果近期也发表在*Nature Communications*^[9])。如果以 graphite 或少层 graphene 作为隧穿电极,在 磁场作用下,随着层间磁矩翻转自 如,少数层 CrI₃的隧穿磁电阻同时 产生台阶式多重阻态,如图3所 示。其中最大 spin-filtered TMR 达 到10⁴量级!

二维磁性晶体的反常隧穿磁电 阻一经问世,瞬间引发热议。值得 一提的是,反铁磁 Crl₃的隧穿磁电 阻吸睛之余,也有发现说,单、双层 Crl₃能够通过静电场有效调节磁性。

的确, Nature Nanotechnology 杂志2018年7月期连刊三篇研究论 文^[11, 12, 15]以及一篇评论文章^[16]讲述 二维磁性的电操控。其中康奈尔大 学研究组报道了单/双 CrI₃^[11]、华盛 顿大学和 MIT 研究组报道了双层反 铁磁 CrI₃中的电控二维磁性^[12]、中 国科学院金属研究所与山西大学研 究组报道了少数层铁磁半导体 Cr₂Ge,Te₆的电控二维磁性^[15]。

如前所述,同样在两层石墨烯 电极夹持的隧穿结构基础上,康奈 尔大学K.F. Mak和J. Shan伉俪隔着 六方氮化硼电介质,放置了上下两 层少层石墨烯gate电极(图4(a, b))^[11]。 由于石墨烯的透光性和无磁性, CrI₃样品中的磁信号可以被MCD探 测到。果不其然,在门电压调制 下,垂直方向施加磁场,不管是单 层样品的铁磁翻转(图4(d))、还是 双层样品的反铁磁一铁磁翻转(图4 (e)),从负门电压到正向门电压均呈 单调调控态势,与MIT 的 Pablo 研 究组和华盛顿大学 Xiaodong Xu 研 究组得到的结论 一致^[12]。

Mak 和 Shan 研究组又将图4(e) 的线图用mapping 的方式呈现给读 者,得到一个十 分有趣的结论, 如图 4(f) 所示。 将门电压外延 到+30V以上, 体系即便在零磁 场下也能纯粹通 过门电压调控得 到铁磁--反铁磁 相变! 这是何等 美妙之事! 不 过,遗憾的是, Mak 和 Shan 并没 有给出门电压 V_g>30 V的实验 数据, 似乎是留 了一手?

此外, Mak 和 Shan 研究组 还给出了这种 Gr/CrI₃/Gr三层隧 穿结构中隧穿电 流随门电压的变 化。他们非常意 外地观测到,即 便在4mV这样低 的偏压下,该器 件的隧穿电导随 门电压依然有双 极 (Bipolar) 调 控 特性, 如图4(c) 所示,最大电导 达到3 µS。

要知道,既 然称之为隧穿 结,就意味着中

图4 康奈尔大学 Mak 与 Shan的 Crl₃隧穿结在门电压下的电控 磁工作^[11] (a, b)隧穿结示意图和光学照片;(c)4 K 温度、 4 mV 偏压下双层 Crl₃隧穿电导随门电压的变化关系;(d)单层 Crl₃隧穿结的电控磁;(e, f)双层 Crl₃隧穿结的电控磁

图5 (a)室温开态电流下,少层 Cr₂Ge₂Te₆在1065 nm 波长激光 辐照下的光电流;(b)BN 包覆的少数层 Cr₂Ge₂Te₆典型器件光学 照片,其中红色虚线为少层 CGT,黑色虚线为少层石墨烯, 比例尺为5 μm;(c)电输运特性^[13];(d)40 K 温度下±100 V 门电 压范围内典型少层 Cr₂Ge₂Te₆器件的双极导通性,截止电流被 设为1 nA(图 a, b, d中的数据均来自中国科学院金属研究 所 QTL 实验室)

间层是绝缘体。一如文献[7]标题所 示, CrI3为 "van der Waals crystalline insulator"。文献[9]也报道称, 尽管Crl3名义上具有与WS2或WSe2 相仿的光学带隙,约为1.2 eV 左 右,但它的电阻"was found in all cases to become unmeasurably high below 100 K"。笔者以为, 文献[11] 报道的门电压下双极隧穿电流行为 虽然有趣,但更可能是一个值得商 榷的 open question。原因如下: 其 一,在其他报道中,在无门电压 时, 双层Crl₃的隧穿零偏压电导量 级约为0.01 µS^[7,9],在20 V门电压下 能透过石墨烯电极接触,硬生生将 隧穿电导提高两个数量级,其背 后的物理原因难以解释;其二, Crl₃的磁性随门电压单调变化,并 没有展现与隧穿电导类似的双极 调控现象。其中因由尚不清楚。不 过,相信 Mak 和 Shan 会向广大读 者呈上一份满意的答卷。

6 少层极限铬锗碲,调控双 重又两极

与反铁磁Crl₃相对照,中国科 学院金属研究所与山西大学团队一 起,在Cr₂Ge₂Te₆少数层本征铁磁二 维半导体中成功利用固态门电压调 控手段,实现了电荷与自旋的双重 双极全电操控^[15]。

如前所述,迄今为止,大部分 铁性二维材料在空气中的稳定性都 较差,需要通过特殊方式封装保 护。因此,近年来该领域的主要进 展都是基于惰性气氛中制备样品。 Cr₂Ge₂Te₆也不例外,常温常压条件 下厚度在6 nm以下的Cr₂Ge₂Te₆基本 不再有电学导通性。绝大多数二维 材料都不同程度存在这一问题,而 这很可能是能否走向实际应用的关 键一步。不过,我们大可以先搁置 "应用"争议,共同来开发一番其中 的物理。

作为磁性半导体,带隙控制和 光电响应等性能值得研究。根据第 一性原理计算,块体 Cr₂Ge₂Te₆ (CGT)有 0.4 eV 左右的间接电学带

隙。对于少层CGT, 其带隙会稍稍增 大,处在红外波段 范围。典型的I—V 回线如图5(a)所示, 能够看到明显的光 电响应。

针对少数层 CGT的场效应器件 (field effect transistor, FET) (图 5(b)), 我们的电输运测量 结果(图5(c))表明: BN包覆的少数层 CGT在铁磁居里温 度 (~64 K) 以下保 持了载流子导通 性,并且能够实现 电子与空穴的双极 场效应。此处的双 极场效应,是平面 FET,不同于Crl₃隧 穿结构的双极隧穿 电导^[11]。这是真正 的双极场效应管, 具有空穴和电子导 通特性。室温下, 源一漏之间1V电 压得到最大开态电 流达数十微安,开 关比达到104以上。 有趣的是,这种双 极载流子场效应, 一首保持到了居里 温度以下,如图5 (d)所示。

然而,该材料距离应用可谓路 漫漫其修远。经过粗略估算,目前 所制备的CGT器件室温下迁移率大 概在50—100 cm²/Vs⁻¹量级,低温 下迁移率低到两个数量级以下。这 里当然还存在电极接触势垒的问

图7 块体 Cr₂Ge₂Te₆在 60 K 温度 60 Oe 垂直磁场下的分形 磁畴^[15, 17]

题,电极接触的优化,还有待进 一步尝试与探索。

二维极限下CGT中载流子双极 场效应当得益于其恰如其分的带 隙。低温微区Kerr测量表明,在电 子或空穴掺杂下,二维Cr₂Ge₂Te₆磁 性亦能得到双极调控,如图6所 示。总的来说,零门电压下少层 Cr₂Ge₂Te₆经载流子掺杂之后变得 "又瘦又高"。

为了理解此种现象,借助第一 性原理模拟计算,揭示出该体系中 存在特殊的自旋极化的能带:间接 带隙的上下带边分别由Cr-d贡献自 旋多子态和Te-p贡献自旋少子态, 造就了实验上观测到的自旋与电荷 双重双极场效应。老子说,天之 道,损有余而补不足。然而,在 Cr₂Ge₂Te₆中,不管是费米面从gap 移向导带还是移向价带,总比例下 降的均是自旋少子(spin down)。由 此,我们说Cr₂Ge₂Te₆是一个"逆 天"的材料恐怕也不算过分。

最后但绝不是无所谓的实验事 实是: 块体 Cr₂Ge₂Te₆的磁畴更有意 思。在 T₆附近,磁畴呈现条纹畴样 式。略低于*T*(直至低温基态),磁畴 悄然转变成如图7所示的较有序分 形图案。这一结构与中国科学院 强磁场中心盛志高团队报道的结果 相吻合^[17]。分形形态的磁畴实属罕 见!其隐隐约约歪歪斜斜的雪花般 对称形状,让人看了不禁要叹一句 "世间竟有这样妖娆的磁畴"。其中 谜之对称美,还有待微磁学圈的科 学家进一步揭晓。块体已如斯,少 层Cr₂Ge₂Te₆的磁畴又将会是何等造 化?实属未知。少层Cr₂Ge₂Te₆磁畴 视觉化以及随门电压的调控变化, 是亟待开发的新方向。

7 结语

与反铁磁 CrI₃隧穿结不同,少 数层 Cr₂Ge₂Te₆作为本征二维铁磁半 导体,能够在居里温度以下电学导 通,也即可以构建平面场效应器 件。这是目前已知的首个拥有内禀 自旋和载流子浓度双重双极可调特 性的二维本征磁性半导体材料。虽 然材料本身的商业价值不高,但其 展示的性能却较为有趣。 无论如何,铁磁半导体发展 至今,仍是茫茫科学大海中未尽 事业之一点滴。而二维铁性材料 的故事,才刚刚开始而已。很多 问题依然存在,需要认真细致地 探索,方能有所收获。以上是笔 者一家之言,供各位读者斟酌和 商榷。

末了,不如将思维稍微发散一下。铁磁、铁电二维半导体雨后春 笋般问世,二维多铁半导体异质器 件会不会是下一个风口? CVD等化 学方法大规模生长二维铁性半导体 薄膜的惬意日子何时来临? 再稍微 发散一下,低温二维本征铁磁半导体 还会远吗?

让我们拭目以待。

致谢 本文在撰写过程中 得到了中国科学院金属研究所 张志东研究员、中国科学院固 体物理研究所王贤龙研究员的 大力支持。

参考文献

- [1] So much more to know.... Science, 2015, 309(5731):78
- [2] Story T, Gałązka R R, Frankel R B *et al.* Phys. Rev. Lett., 1986, 56:777
- [3] Ohno H et al. Nature, 2000, 408:944
- [4] Dietl T. Semicond. Sci. Technol., 2002, 17:377
- [5] Huang B et al. Nature, 2017, 546:270
- [6] Gong C et al. Nature, 2017, 546:265
- [7] Klein D R et al. Science, 2018, 360: 1218
- [8] Song T C et al. Science, 2018, 360: 1214
- [9] Wang Z et al. Nature Commun., 2018, 9:

2516

- [10] Deng Y J et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe₃GeTe₂. Preprint at https://arxiv. org/abs/1803.02038 (2018)
- [11] Jiang S W, Li L Z, Wang Z F et al. Nature Nanotech., 2018, 13:549
- [12] Huang B et al. Nature Nanotech., 2018, 13:544
- [13] Liu F C et al. Nature Commun., 2016, 7:12357

[14] Cui C J et al. Nano Lett., 2018, 18: 1253

- [15] Wang Z et al. Nature Nanotech., 2018, 13:554
- [16] Burch K B. Nature Nanotech., 2018, 13:532
- [17] Guo T *et al.* Multiple structure and symmetry types in narrow temperature and magnetic field ranges in two-dimensional Cr₂Ge₂Te₆ crystal. Preprint at https://arxiv.org/abs/1803.06113 (2018)